
REORGANIZATION OF THE APL LIBRARIES

by

E. Armitage

J. Chenier
C. Leibovitz
D. Precht
Y. Zia

University of Alberta

ABSTRACT

The University of Alberta has decided to reorganize the APL library. The functions are being rewritten
to conform to a new set of standards. New standards have also been developed for the documentation.
..

At the time of the start of the Droject, the APL program library was a kind of museum dedicated to the
art of programming in APL language rather than a program library at the user's service. Its division into
workspaces was not necessarily functional but reflected instead a ~artition according to the contribution
of the different "schools" and "artists".

The library tended to illustrate what APL could do (and how elegantly and in how many different ways)
and not how it could best held the user.

As a result, the library had no unity and the functions had no standards. The library contained a
number of obsolete functions. (In one case, the author was kind enough to indicate in a comment line
the function was not reliable and was quite inefficient.)

that

Duplication could not be avoided. A function performing less well than one already in the library
could not be rejected, each one was a different mastermiece. Both had to be keDt in the spirit that the
Mona Lisa does not exclude the Venus de Milo.

Freedom of art does not go with strict laws. The anarchy of the rules for the distribution of the
parameters between the arguments and the global variables illustrated the versatility of the language but
was not helpful to the user. A lot could be said also about the absence of rules concernin~ the amount of
internal checking, programmed error messages, or fixing the allowed CPU time.

Likewise, the documentation of the program library was insufficiently standardized and it was a~marent
that better could be achieved in the light of accumulated experience in the use of APL.

The purpose of the reorganization of the APL library was
i) to reduce the amount of duplication and to discard 'junk' programs.
2) to establish new standards for function structures and documentation.
3) to improve the grouping of functions into worksDaces and workspaces into libraries (according to

functional classification).

4) to establish the areas in which development work is most needed and to start work accordingly.

Reducing the amount of duplication

This requires a review of the content of the existing library and an evaluation of the functions so that
we can decide 'what we are going to keep'. The rule adopted was that of J.W. Tukey: IF A THING IS NOT
WORTH DOING, IT IS NOT WORTH DOING WELL. Therefore, inefficient algorithms are to be rejected even if
they are perfectly coded.

It is known, however, that the techniques for efficient coding in APL are different from those aPPlying,
say, to Fortran or Algol coding. In particular, it is immortant in APL to keep at a minimum the amount
of interpretation. Coding should generally be concise and avoid as much as possible, repeated interpret-
ation of a line through loops or iterations. What is less well known is that the practice of choosing the
most efficient algorithm (in terms of the number of arithmetic operations) does not lead necessarily to
the most efficient APL function (however well it may be coded). The overall efficiency of an APL
function is measured by both the CPU time required by the al~orithm itself and that reauired in its
interpretation during execution. It may well be that a 'less' efficient al~orithm may need less inter-
pretation and have therefore a greater overall efficiency than that of a 'more' efficient one.

~3

An APL function may have to be used a number of times with different values for the arguments. It is
sometimes Dossible to code the function so that the different arguments are combined in one vector ar-
gument (or array argument) and in such a way that the code is interDreted only once for all the values of
the argument. In such a case, the efficiency of the function increases dramatically and may eaual or
exceed that of a corresponding Fortran routine. In fact the interpretation time spent per element of the
vector or array argument, is now divided by N (N being the number of elements of the vector argument). If
N is large enough, the time spent on interpretation becomes relatively negligible. However, even with N=2,
the interpretation time is already halved (relatively). This feature was exploited in codinR some of the
functions.

In evaluating the functions, we must consider the following:

Unless a function is well documented it may be difficult to discover its true purpose. A function may
perform badly except in a few cases. The function is therefore a poor one unless it has been specifically
written to handle those few cases. Another function may be poor from all points of view exceDt that of
core saving. It is only in the light of the Durpose that a correct evaluation may be done. Once the
purpose is given the evaluation job is better defined. If we do not know the purpose of the function, we
must provide for an additional job effort to avoid the following possible mistakes.

a) We may mistake the function for a general nurpose one and recommend its use without noticing a number
of inefficiencies (due to modification of the coding or the al~orithm for a special DUrDOSe).

b) We may mistake the function for a general purpose one and discard it because of an apparently ooor
performance without knowing that the routine had a more limited but important purpose.

The Algorithm

It is often possible without too much effort to recognize the algorithm on which a program is based.
It is not easy to check if the algorithm has been scrupulously respected or if it has been modified.
Moreover, if the algorithm has been modified we must find out if the performance has improved, or if the
modification was unwarranted or if it had a special purpose (and which one).

The Coding

The coding is often undocumented and its logical structure is "mysterious". The how's and the why's of
the coding are often very hard to establish. Even when the coding is clear it must be checked for all
possible paths.

The Robustness

A good function must provide for correcting measures in all pathological cases. If for instance a
divisor could be zero, we should check if it is before performing the division. If the divisor is zero
the function should either deliver a message and stop, or branch to other computations according to the
case. The robustness of a function can he checked "logically" by trying to determine the different
pathological cases, by testing the program with various inputs and by comparing it with a similar program
of known robustness.

The Documentation

The adequacy of the documentation can be checked by
I) reference to standards of documentation,
2) using the routine relying on the documentation,
3) examining it for pertinent information that may be useful either to the general user or to a beginner

(either in computing or in the subject field).

Testing

Testing is a difficult art because it must be engineered
i) to follow the different logical paths of the program,
2) to find the validity domain of the program, and
3) to find out its performance in almost pathological cases.

Ideally, the evaluation should state the correct purpose of the function and find out how well the
algorithm and the coding are fit for the purpose. It would include a study of its robustness, the result
of a thorough series of tests, and finally an appreciation of the available documentation.

It became clear to us that in such a case it would take too much time to completely evaluate the APL
library. We therefore decided that the evaluation would be made in stages.

As a first stage, for instance, the main algorithm would be recognized and dealt with independently of
possible slight modifications. Functions would be compared (to Dick the better) instead of being
considered singly. Testing would be done in a limited sense to find the performance for the usual cases

instead of the almost pathological ones.

Once the library is reorganized it will always be possible to improve the evaluation of each program.

STANDARDS FOR FUNCTION STRUCTURE

The standards for function structure were nonexistent. Suppose, for instance, that one is interested
in a function computing the integral of f(x) in the interval [a,b]. An APL function giving an approxi-
mation to this mathematical expression will need extra parameters such as the precision required, the
maximum number of iterations permitted, the starting number of intervals into which [a,b] is to be
divided, etc. Those extra parameters are called control parameters here as opposed to the parameters in
the original mathematical expression. We must now decide which of the parameters (control and regular)
should constitute the arguments of the function, which should be global variables, which should have
preassigned values. How should the user modify the preassigned values? Should there be programmed
error messages? In what circumstances? What should the options be once an error message is delivered?
Should there be a check on the amount of CPU time used, etc., etc.,..?

We have decided to implement the following standards in the use of parameters:

l) The regular parameters should become the arguments of the APL function. If there is more than one
regular parameter and if there is a natural way to divide the parameters into two classes, the
function will be dyadic. No strict rule has been devised to decide which of the parameters would
constitute the left argument and which would constitute the right argument of the function. However,
in case one of the parameters is the name of a function then it would constitute the left argument.

2) The control parameters should be global variables to which the function assigns default values.
result, the use of the function becomes quite similar to the use of the mathematical expression
approximated by the function.

As a

3) Each function, say F, containing control parameters should have a ~lobal variable called DEFAULTF
acting as a switch; whenever the value one is assigned to DEFAULTF all control parameters of F regain
their default values.

4) Each workspace containing functions using control parameters will have a niladic function with no
explicit result called DEFAULTALL that sets all switches (DEFAULT1, DEFAULT2, etc...) to one, where
ALL stands for the first three characters of the workspace name.

5) Whenever possible, to avoid functions with no explicit result.

VDEFAULTALL VZ÷...Fi... VZ÷...F2...

[1] DEFAULTFi÷i [l] ~4x~(DEFAULTFi~i) /i] *4×i(DEFAULTF2mi)

[2] DEFAULTF2÷i [2] T__TL* [2] T._T2÷

[3] ' O K ' [3] N__Ni* [3] N_N2 ÷

V [~ j [4]

V V

F1 and F2 use two control parameters each named respectively TTi, HHi, and TT2, HH2. Lines 2 and 3 in
the body of the functions F1 and F2 assign the default values. Line 1 in these two functions is a
conditional branch to line 4 to bypass the assignment of default values in case DEFAULT1 or DEFAULT2
have been assigned a value other than one.

With this kind of arrangement the user has the following options:
a) He may assign values to the control parameters and these will be effective provided he assigns also a

value other than one to the switch DEFAULTF corresponding to the function F. He may then save his
workspace.

b) As long as the user does not modify the value of the switches and that of the control variables, any
reloading of the workspace will have the functions ready to be executed with the previously assigned
values of the control variables.

~5

c) As long as the user does not reassign the value one to a switch, the user may assign new values to the
control variables.

d) Whenever the user would like to be sure that the default values are used, he only needs to type
DEFAULTALL and carriage return without having to reassign the default values.

6) Whenever a function could take more than, say, i0 sec. for its execution (depending on the value of
the regular and control parameters), an additional parameter should be used to determine the maximum
CPU time allowed. The function should be written in such a way that it becomes interactive when the
allocated amount of time has been used. The function should be able to display whatever information
is needed to decide if it is better to interrupt execution or if it is advisable to allow for an
additional amount of CPU time.

7) Our implementation of the convention for control variables is such that when the default values are
used, the previous values of the global variables are not modified.

In the following example of the structure of the function, the control variables CPi and CP2 are
local. They have corresponding global variables CPi and CP2.

If the option chosen is the default one, only the local variables CPi and CP2 are assigned default
values. If the option is for user-defined values, the local variables CPi and CP2 are assigned the
values of the global variables CPI, CP2 defined by the user.

VZ÷...FUNCTION...;CPi;CP2;...
[lJ I 2 1 ÷ I 2 1
[2J SAFUNCTION÷STOP
[3] ÷OPTxt(DEFAULTFUNCTION~i)
LqJ CPi+(ASSIGNING DEFAULT VALUES TO CONTROL PARAMETERS)
[5J CP2÷...
[6j ÷START

[j OPT : CPi+C21
[J CP2÷C_P2

[J START:START OF COMPUTATIONS
. °

[J LOOP:+MESSAGExtCPU<.Oi66666666667x(121)-I21
[J GO:START OF LOOP COMPUTATION

[J +LOOP×i (END OF THE LOOP)

i"]"
L J +0
[J MESSAGE:(MESSAGE WITH OPTIONS:*GO OR +STOP)
[J STOP:Z÷(PARTIAL RESULTS)

V

8) If a function requires specific arguments, it is often desirable to check them and issue appropriate
error reports before execution. Whenever possible and advisable to do so, checking should be done.

The checking of input parameters has been separated in a modular way from the algorithmic Dart.
Therefore, there will be two functions instead of one: the first will not check the inDut, the
second will first check the input and then will call the first one. This will allow more flexibility
and will tend to satisfy different kinds of users. In this case, naming conventions will indicate
functions by FUNCTION and FUNCTIONCK, respectively. The error message delivered should indicate the
name of the function issuing the error report.

DOCUMENTATION STANDARDS

It was recognized from the beginning that the goals of the project must, for practical purposes, be set
in two steps:

i) to make available a collection of useful functions and documentation formed according to our newly
developed standards

2) to develop a collection of workspaces that would encompass all the university disciplines and in
which no function would be included except after an evaluation that would show that it reDresents the
APL state of the art (in algorithm and in coding).

The amount of material and the variety of subject areas processed, developed, evaluated and/or produced

46

is of sufficient magnitude to require the work of a group of persons. The development is to take place
in gradual steps from setting down details for the formulation of the project, design and evaluation of
initially non-interactive functions to, finally, the production of packages built to be more interactive
for the users who are not computer oriented.

Each of the functions is to be placed in a library with a number corresponding to the first two digits
of the SHARE classification code. TDis scheme was already in use at the University of Alberta for its
general program library. Its use by the APL program library allows these two collections to be placed
together in a reference catalog of programs.

The documentation for the APL public library functions is to be made available to users in both hard
copy and on-line forms. Each subject area will have a separate documentation manual. In exceptional
cases, several subject areas may be included in one manual.

For each given library number, the documentation has been placed in a workspace called LIBDOC. The
documentation was therefore kept in a workspace entirely separate from the functional workspaces. Since
printed manuals of the documentation would be readily available for the user, the on-line documentation
was maintained as a quick and convenient reference for the user as well as a source of the most current
documentation. These workspaces were also designed for ease in use of the APL print train and in tane
preparation for transporting to other installations. Placing the documentation in a separate workspace
also makes additional space available in the functional workspace.

The workspace LIBDOC contains all the documentation for a given library number. LIBDOC provides an
easy and consistent access to the documentation for the structural units of any particular workspaces.
These units are hierarchical to enable the user to access a generalized or detailed description of the
object desired. The variable LISTWS lists the available workspaces in that library and briefly describes
their contents.

Each workspace in a given library is described in a variable of the same name in LIBDOC. This variable
either describes the contents of the workspace or gives a brief explanation of the purpose of that work-
space with a list of variables which give more details.

Each stand-alone or driving function in a workspace is documented in a variable named functionHOW. The
user need know only the name of the driving function to obtain all subfunctions needed by the main function.
These can be obtained by copying the group named by the function name suffixed by GP. Groups of related
functions will be called by a mnemonic name.

Examples were considered a worthwhile addition to the on-line documentation to allow to find quickly
an illmstration of input, execution and output. The workspace containing these examples was named
XMPLS and each such example called funetionXMPL.

The format for documentation variables LISTWS, wsname, functionHOW, and functionXMPL has been
explicitly outlined in the attached form no.-l.2b. These variables include details enabling the user to
locate the object, determine its syntax purpose and descripton, and to allow him to contact the author or
a consultant on further information if so desired.

A limited numemical analysis library as defined in the first stage of development has now been
completed. The manual has been produced. A statistical library is presently in the development stage.

The next steps taken by the project will be advertised as soon as decisions are made with respect to
them.

APLP
Form No.-l.2b
9/9/75

Documentation Units and Standards of Documentation

The present documentation scheme includes the following structural units:

i. "LIBDOC" Each public library has a workspace called LIBDOC which contains all the stored
documentation for that library.

In each LIBDOC there is a variable called

2. "LISTWS" which lists the available workspaces in that library and briefly explains their
contents.

3. "WSNAME" For each workspaee in a given library, there is a variable of the same name in
LIBDOC. This variable either describes the entire workspace if the workspaee has a

47

4. "Funct ionHOW"

5. "NameGPHOW"

single purpose, or gives a brief explanation of the purposes of the workspace and a
list of variables which give more detail.

variables will be used to document stand alone or driving functions.

variables will be used to document a group of related functions referred to by the
label "NAME".

6. "XMPLS"

7. "FunctionXMPL"

Each public library will have a workspace called "XMPLS" which will contain
examples of input, execution and output of stand alone or driving functions in that
library.

variables will contain an example of input, execution and output of the indicated
function. These variables will be placed in the workspace "XMPLS".

Format for the documentation units within the LIBDOC workspace will be:

i. "LISTWS"

Lib. no. LIBDOC LISTWS
A Brief description of the purpose of this library.

WORKSPACE NATURE OF CONTENTS

2. "WSNAME"

Lib. no. LIBDOC WSNAME
LOCATION: Lib. no. WSNAME

A brief description of the purpose of the workspace followed by a list of functions
in the workspace together with documentation for each or a reference to further
documentation of the function in FunctionHOW or NameGPHOW.

3. "Function HOW" or "NameGPHOW"

Lib. no. LIBDOC FunctionHOW (or NameGPHOW)
LOCATION: Lib. no. Wsname Function (or NameGP)
SYNTAX:
PURPOSE:
FunctionGP or NameGP MEMBERS: (If any)
ARGUMENTS: (If any)
DESCRIPTION:
RESTRICTIONS:
ORIGIN:
DATE REV:
CONTACT:

Format for the sampSe program run located in the XMPLS workspace will be:

"FunctionXMPL"

Lib. no. XMPLS FunctionXMPL
FUNCTION LOCATION: Lib. no. WSNAME Function (or Groupname, if any)
DOCUMENTATION LOCATION: Lib. no. LIBDOC FunctionHOW
SAMPLE PROBLEM:
AUXILIARY FUNCTION DEFINITION: (If any)
INPUT:
OUTPUT:

48

